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ON THE STABILITY OF NONLINFAR OPERATOR DNIFFERENTIAL
FQUATIONS, AND APPLICATIONS
by

C. V. Pao William G, Vogt
Department of Flectrical Engineering

University of Pittsburgh
Pittsburgh, Pennsvlvania
ABSTRACT
Consider the nonlinear operator differential equation

(i.e., equation of evolution)

*) O o ax(e) + £Gx(E)) (t > 0)

where A is a linear (unbounded) operator with domain and range

both in a real Hilbert space H and f is a (nonlinear) function
defined on H into H. The object of this paper is to investigate

the existence, the uniqueness and the stability or asymptotic
stability of solutions to (*) by using nonlinear semi-group proper=-
ties. Criteria on A and on f for the generation of a contraction

or negative contraction semi-group are established from which the
existence, uniqueness, stability and asymptotic stability of solutions
of (*) are insured. Applications are given to the second order par=-

tial differential equation of the form

n
Ju 9 Ju n
= — (a,,(X) =)+ e(Xu + f(x,u) Xe <R,

Criteria in terms of the coefficients aij(x), c(X) and of the function

f are obtained.



ON THE STABILITY OF NONLINEAR OPERATOR DIFFFRENTIAL

EQUATIONS, AND APPLICATIONS

1. Introduction

This paper is concerned with the existence and the stability
problems of the onerator differential equations (i.e., equatioﬁs of

evolution) of the form

L0 o A x(t) + £(x(t)) t20 (1-1)

where A is a linear, in general unbounded, operator with domain D(A)

and range R(A) both contained in a real Filbert space H and f is a
(nonlinear) function defined on H into H. It is well known that some
semi-linear svstems of differential equations, hoth ordinarv ahd

partial, can he reduced to the form (1~1) and in such cases A may be
considered as an extension of a linear differential operator. In order

to examine the stability of solutions to (1-1), it is onlv necessary

to characterize theilr properties without actually constructing the
solutiong, This 1is done be considering the properties of a nonlinear
semi-group because if the operator A + f(.) generates a nonlinear semi-
groun {T.; t > 0} (see definition 2.1) then a solution to (1-1) start-
ine at t = 0 from anv element xoeD(A) is given by x(t; %) = Ttxo for

all t > 0 with x(N; %xo) = Xg. Thus the existence of a solution to (1-1)
is_ensured and the stability property can be determined from the family

of nonlinear operators {Tt; t > 0}. The object of this paper is to

impose conditions on the operators A and f such that the operator AZA+f(.)
generates a nonlinear contraction or nepative contraction semi-group in H
or in an equivalent Hilbert space of H (see definition 2.4) from which

the existence, uniquenegs and stahility or asymptotic stability of solutions

to (1-1) are insured.



-3-

The following definitions specifies what we mean by a sclution,
an equilibrium solution and the stahility of an unperturbed solution,

Definition 1.1. 7Py a solution x(t) of (1-1) with Initial

conditions x(0) = xeD(A) in a Filbert space ¥, we mean the following:

(a) x(t) is uniformly Lipschitz continuous in t for each
t>0 With x(0) = x3

(b) =x(t)eD(A) for each t > 0 and Ax(t) + f(x(t)) is
weakly continuous in t;

(¢) the weak derivative of x(t) exists for all t > N and
equals Ax(t) + f(x(t));

(d) the strong derivative é%éﬁl (=Ax(t) + £f(x(t)) exists and
is strongly continuous excent at a countable number of values t.

The above definition of a solution x(t) is in the sense of a weak
solution since x(t) satisfies (1-1) in the weak topology of H., However,
by the condition (d), x(t) is an almost everywhere strong solution in
the sense that x(t) satisfies (1-1) for almost all values of t > 0 in

the strong tonology of H.

NDefinition 1.2. An equilibrium solution of (1-1) is an element

%o in D(A) satisfying (1-1) (in the weak topology) such that for any

solution x(t) of (1-1) with x(nN) = Xq

x(e)=x]] = 0 for all t > 0.
It can be shown that if x(t) is a solution of (1-1) then it is
an equilibrium solution if and only if Ax(t) + f(x(f)) =0 for allt >0
(ef [9]).

Definition 1.3. An equilibrium solution (or any unperturbed solution)

x, of (1-1) is said to be stable (with respect to initial perturbations) if

given any € > O, there exists a § > 0 such that



by

||x—xe|| < 6§ dimplies le(t)-xell <e for all t > 03

X, is said to be asymptotically stable 1f
(1) 1t is stable; and

1) o° |Ix(e)=x || = 0

where x(t) is any solution of (1-1) with x(0) = xeD(A), If there
exist positive constants M and B such
(1) | |x(t)-x.|| g Me Pt ]lx-xell for all t > 0
then X, is called exponentially asymptotically stable.
The existence problem for the case of a general nonlinear equation
of evolution

dx(t)
dt

where Al is a general nonlinear operator with D(A;) and R(Al) both

= Alx(t), (1~2)

in H, has been investigated by Komura [6], Kato [5] and by Browder [2];

and the stability problem of the same type of equation has been studied

by the author in a separate paper [9] which has a close connection with

the nresent work. Because of the implication of a general nonlinear
operator differential equation, the application of its results to partial
or ordinary differential equation needs additional justification, However,
in the case of semi-linear equation of the form‘(l-l), criteria on the
operator A and on the function f are directly applicable to certain partial
or ordinary differential equations. Examples of application to partial
differential equations are given in the last section in order to illﬁstrate
certain steps in apnlying the results developed for onerator differential
equation, Further apnlications to nonlinear partial differential eauations

will be discussed in a separate presentation.



2. General Background

In this section, we shall introduce some basic definitions and
state some theorems from [9) which are fundamental in the development

of our results,

Definition 2,1. Let H be a Filbert space. The family of

operators {Tt; t> 0} is called a nonlinear semi-group on H if and

onlvy if the following conditions hold:

(1) for any fixed t > 0, T, is a continuous (nonlinear)

operator defined on H into H;
(i1) for any fixed x € H, Ttx is strongly continuous in ¢t}

(4id) TSTt = Ts+t for s, t > 0, and T, = I (the identity operator);

(iv) ||Ttx-Ttyll < M||x-y|| (M > 0) x,y, € Hand ¢t ;‘0.
If (iv) is replaced by

(iv)' [thx—Ttyll e BE| |x-y|| ( 8>0) x,v ¢ H and ¢ >0

BA

then {Tt;

t > 0} is called a (nonlinear) negative semi-group; if M <1
then it is called a (nonlinear) contraction or negative contraétion
semi-group according to (iv) or (iv)' respectively. The number B
satisfying (iv)' 1s called a contractive constant of {Tt; t > 0}. For
a subset D of H, the family {Tt; t > 0} is said to be a nonlinear

contraction (resp., negative contraction) semi-groun on D if the properties

(1)-(iv) (resp.,(1)-(iv)') are satisfied with 1 < 1) for all x,y € D.

Definition 2.2. The infinitesimal generator Al of the nonlinear
semi-group {Tt; t > 0} 1is defined by

w-lim ‘p5°%¥
he0 ~ h

for all x € H such that the limit on the right-side exists in the sense

Alx =

of weak convergence,
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Definition 2.3, An operator (nonlinear) A1 with domain D(Al)
and range R(Al) both contained in a real Hilbert space is said to be
disgipative 1if

(Alx - Aly, X=y) <0 for x, v € D(Al); (2-1)
and A1 is called strictly dissipative if there exists a real number
B > 0 such that

(A;x - Ay, x=y) ¢ -8 |x=y| 12 x,y € D(A;). (2-2)
The supremum of all numbers B satisfying (2-2) is called the dissipative
constant of A,.

1
It follows from the above definition that A1 is dissipative if
and only if -Al is monotone and A1 is strictly dissipative if and only
if there exists a real number 8 > 0 such that —(A1 4+ BI) 1is monotone
(cf [8]). Note that definition 2.3 coincides with the usual definition

of dissipativity when A; is a linear operator (ef. [70).

NDefinition 2.4. Two inner products (« » ) and (+ ~)1 defined

on the same vector space H are said to be eauivalent if and only if

the norms ||+|| and |lo||1 induced by (+ » «) and (s » +), respectively
are equivalent, that is, there exist constants §, vy with 0 <8 <y < =

such that
sllx]] 2 Hxll; £ v||x|| for all x ¢ H, (2-3)

The Hilbert gpace Hl equipped with the inner product (¢ » -)1 is said
to be an equivalent Hilbert space of ¥ and i s denoted by (H, (. » -)1)
or simplv by Hl.

In order to show the results in the following sections we state
some tesults from [9].

Theorem 2.1, Let A1 be a nonlinear operator with domain D(Al)

and range R(A;) both contained in a Hilbert space H such that R(I—Al)-H.



Then Al is the infinitesimal generator of a nonlinear contraction
semi-group on D(Al) if and only if A, 1s dissipative; and A, is the
infinitesimal generator of a nonlinear negative contraction semi-groun
if and only if Al is strictly dissipative.

Theorem 2.2, If A1 is the infinitesimal generator of a
nonlinear contraction semi-groun (resp., negative contraction semi-
group) in an equivalent Hilbert space on D(Al) then A; is the infinitesimal
generator of a nonlinear semi-group (resp., negative semi-group), not
necegsarily contractive, on the same domain D(Al) in the original Hilbert
space,

Remarks: (a) In Theorem 2,1, the condition R(I—Al) = H can be
weakened by R(I —<1A1) = H for somea > 0, (b) The nonlinear contraction
semi-group {Tt; t > 0} penerated by Ay in the above theorem has the
following additional property: For any xeD(Al), the strong derivative
d(T x)

——E%—— = Athx exists and is stronglv continuous except at a countable

number of values t (cf. [5]). Thus for any xeD(Al), T.x is a solution
of (1-1) in the sense of definition 1.1.

It is seen from theorem 2.1 that i f the operator A + f(-) is
dissipative or strictly dissipative and R(I = A - £(+)) = H then
A+ £() is the infinitesimal generator of a contraction and negative
contraction semi-group respectively. However, the requirement
R(I = A~ f(.)) = H by itself is not easy to verify since it is
equivalent to the functional equation

X - Ax - £(x) = =z (2-4)

having a solution for every zeH, 1In the following section, we shall
impose conditions on A and f to insure the existence of a solution
of (2-4), Ve consider first the case that A is the infinitesimal

generator of a linear contraction (or negative contraction) semi~groun
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of class C, (cf. [11]1), and then consider the more general case
when A is an unbounded closed operator. Notice that the infinite-
simal cenerator of a semi-group is alwavs closed.

3., Existence and Stability of Solutions

In the proof of the main theorems in this section, we have
used some results developed by Browder (ef. [1], [2]). It is noted
that a Hilbert space is reflexive and uniformly convex and the
definition of an accretive operator defined in [2] coincides with a
monotone operator when the underlying space is a Filbert snace.

Definition 3.1. Let x(t) be a solution to (1-1) with x(0) = x,

A subset D of 1 4is said to be a stability region of the equilibrium
solution (or any unperturbed solution) X, if for any € > O there exists
a § > 0 such that
x € D and l]x-xe|| < § dimply l|x(t)-xe|| <e for all t >0,
Theorem 3,1. Let A be the infinitesimal eenerator of a
(linear) contraction semi-proup of class C,. Assume that f satisfies:
(1) f is defined on all of I into ¥ such that it is continuous from
H in the strong topology to the weak tonology, and is bhounded on
every bounded subset of H, (i1) for any x, v ¢ H, (£(x)-f(y), x-y) < 0.
Then (a) for any x € D(A), there exists a unique solution of (1-1)
(in the sense of definition 1.1) with T X = %3 (b) any equilibrium
solution x, (or any unperturbed solution such as periodic solution),
if it exists, 1s stable; (c¢) a stability region of x, 1s D(A) which
can be extended to H,
Proof. Let A; = A+ f(s) with D(Al) = D(A). Since an

infinitesimal generator of a contraction semi-group of class C0 is



denselv defined, dissipative and R(I-A) =11 (cf. [7] or [11]), it
follows by the dissipativity of A and by the assumption (ii) on f
that

(Ayx=A,v, x~y) = (Ax-Ay, x-y) + (£(x)-f(y), x=y) < 0 for all x,v ¢ D(Al)
which shows that Al is dissipative. To show that R(I—Al) =1, we
applv a theorem (theorem 3) in [2]. 1Vote that the operator -A is
monotone and the range of -A + I is all of ¥ with D(-A) = D(A) dense
in H. Thus the operator G = -A is accretive (or monotone). Let
G, = T-f(+), then from assumption (i) G, is defined on all of H
and is continuous from H in the strong tonology to the weak topology
(i.e., G, is demicontinuous on H) and mars bounded subsets of H into
bounded subsets of H, Go is monotone, for

(6 5=Govs %=¥) = (x-y, x=y) ~(£G)-E£(y), xy) 2 ||x=y||® =,y em
where we have used assumption (ii). Moreover, by letting y=0 in (ii)

gives

(£(x),x) 2 (£(0),x) < PHEoy ] |1l for all x e H (3-1)

It follows by the dissipativity of A and by (3-1) that

v

| |-AxtGox|| 2 (~Axte x,x)/||x|] 2 (6 x,x)/1]x]|=((x,x)=(£(x),x)) /] |%]|
> |1x|| = [[£Co)]] for all x € D(A) (x # 0).
Thus ||6x + G x|| + + = as ||x|] > » . Hence all the hypotheses in
theorem 5 of [2] are satisfied. It follows that R(I-A,) = R(G+G ) = H.

This later condition and the dissipativity of A, imply that A1 is the

1

infinitesimalvgenerator of a nonlinear contraction semi-group {Tt; t> 0}
on D(A) by applying theorem 2.1, Therefore, for any x € D(A), TX € D(A)
and is the unique solution of 1-1 with T0x=x. Since

l]Ttx-Ttyll 2 ||x-y|| for all t > 0 x,v € D(A)
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it follows that by taking y as the equilibrium solution X, Or any
unnerturbed solution such as periodic solution, if it exists, then
it 1s stable. Note that Ttxe =X The above inequality holds for
anv x, v € D(A) which implies that a stability region is D(A) and
thus it can be extended to the whole space V¥ since ND(A) is dense

in H (cf. [9]). Therefore, the theorem is proved.

Theorem 3,2, Let A be the i nfinitesimal generator of a
(linear) negative contraction semi-group of class Co with contractive
constant B, Assume that f satisfies the condition (1) in theorem
3.1 and that

(£(x) - £(y), x-y) < k||x~y| |2 with k < g for all x,v € I, (3-2)
Then all the results in théorem 3.1 hold, Moreover, if an equilibrium
solution exists (or any unperturbed solution), it is exponentiallv
agymptotically stable,

Proof. Let A1 = A+ f(+). Since A is the infinitesimal generator
of a nepative contraction semi-pgroun, it is densely defined, dissipative
and R(I-A) = H, Applving theorem 2.1 for the linear case, A is strictlv
dissipative with dissipative constant 8, that is

(Ax,x) < -B!lxllz for all x € D(A).
Thus the onerator Al is strictly dissipative with dissinative constant
B~k since by the hynothesis (3-2)

(Ajx-Ay, %x=v) = (Ax-Ay, x-y) + (£(x)-£(y), x-y) £ =(B-K)||x-y] |12
for all x,y € D(Al)‘ To show that R(I-A;) = H, we prove R(I- aAl) =¥
for somea > 0, since the monotonicitv of -A implies that (I—‘uA)'l exists
for everya > 0, and if R(I~ aA) = H for somea > O then R(I-A) = H
(cf. [5]). The reason for doing this is that if the same arpument as

in the proof of theorem 3.1 is used it will lead to the unnecessarv
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requirement k < 1, Let I —(xAl = A+ (I -af(+)) =G+ Go where G=—a A,

and GO=I-<1f(-). Since A is the infinitesimal generator of a semi-groun,
a € p(A) (the resolvent set of A) for alla > 0 (cf. {11]) which
implies that R(T+G) = R(I -a A) = H., The mapping Go = T = af(s) is
monotone fora < k1 since by the assumption (ii)

lx=v|1? > 0

(Gox—Goy,x-y) = (%=v,%-v) = o (£x)=f(y),x-y) > (1 - ak)

v

It is obvious by the assumption (i) that Go is continuous on ¥ in the
strong topology to the weak topology and 1is bounded on every hounded
subset of H, Finally, the relation ||[Gx+G x[| » = as [[x]| » = is
also satisfied., This is due to the fact that the dissipativity of 2 A

¥

and the relation (3-1) imply that

1

where o > 0 18 a fixed number. Wence by choosinga < kfl, all the

GxtG x| [ 2 (-anx + 6 x,x)/ | |x|]| 2 ((x,x)=a (£(x), ) /] [x! 2] [x}[-a [[£(0)]]

hypotheses in theorem 5 of [2] are satisfied and the result R(I -'1A)=R(G+Go)=H
follows. Tt should be noted that k > 0 so that 0 <a < k-l exists.,

(if k £ 0, then G, is monotone by taking, for instance, a = 1 and the

other conditions remain unchanped). By theorem 2.1, Ay is the infinite-

simal generator of a nonlinear negative contraction semi-groun {Tt; t > 0}

on D(A) with the contractive constant R-k. Therefore the results in the
theorem follow directly from the negative contraction property of the
semi-groun {Tt; t > 0},

Remark, If A is the infinitesimal generator of a contraction
semi-group instead of a negative contraction semi-group, any unperturhed
solution is still asymptotically stable provided that the constant k
appearing in the condition (3-2) is negative, since in this case, we mav
take B=0 and the operator A1 = A+ f(+) remains strictly dissipative with

dissipative constant -k, The proof of R(I-A) = F remains the same.
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Corollary 1. TUnder the hypotheses of theorem 3.1 (theorem
3.2) and in addition, if £(N) = 0, then the null solution is stable
(asymptotically stable) with the stability region the whole space ¥,
Proof. 1If £(0) = 0 then x(t) = 0 is an equilibrium solution
(called the null solution) of (1-1). Hence hy theorem 3.1 (reso.,
theorem 3.2), the null solution is stable (resp., asymptotically stable)
with the stability region extended to the whole space H.

Corollary 2. Let A be the infinitesimal generator of a (linear)

negative contraction semi-group of class Co with contractive constant £,
and let f be Lipschitz continuous on H with Lipschitz constant k < g,
that is

[1£G)-£) || < k||x=y|| for all x,y e H, (3-3)
Then for any x € D(A) there exists a unique solution T.x to (1-1) with
Tox=x such that any equilibrium solution Xq to (1-1) is asvmptoticallv
stable. 1In particular, if f(0) = 0 the null solution is asymptoticallv
stable, Moreover, a stability repion is D(A) which can be extended
to the whole space H,

Proof. By the Lipschitz continuity of f on H, it follows that
condition (i) in theorem 3,1 is satisfied, This is due to the fact that
strong continuity implies weak continuity, and by (3-3) with x a fixed
element in H

HEG ] 2 HEGD ]+ =l |+ x|

which is bounded whenever ||x|| is bounded. Moreover, by (3-3)

EG) - £3), x=9) < |[E@-£) ]| ||x=y]| < k| |x-y]]?
and so condition (3-2) in theorem 3.2 is satisfied. Ilence, by theorem
3.2 the existence and the uniqueness of a golution as well as the
stability property of an equilibrium solution are proved. In particular,

if £(0)=0 then corollary 1 implies that the null solution is asymptoticallv

stable,
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It is obvious that under the hypotheses of theorem 3,2
and in addition if an equilibrium solution x, exists then it is
unique since if v, is another equilihrium solution, the nepative

contraction nromertv of any two solutions to (1-1) implies that

Hxgvell s &0 |x v || for all t > 0
which is imnossihle unless Xy = Voo Note that Ttxe =X and TV =Ve
for all t > 0, The following theorem gives weaker conditions on
Ay and on f for the uniqueness of an equilibrium solutiom.
Theorem 3,3. Let the linear omerator A anpearing in (1-1)
be such that 0 ¢ ND(A) and that for some finite number R(i.e., [R!<w),
(Ax,x) < P(x,x) for all x £ D(A).
Let £ be defined on D(A) to ¥ such that £(N)=0 and such that for some
finite number k (d.e., !kl < )
(£(x),x) < k!lx][z for all x e D(A).
If 8 > k then the null solution of (1~-1) is the onlv equilibrium solution.
Proof. Tt is obvious that the zero vector is an eauilibrium
solution of (1-1). Let x, *e anv other equilibrium solution, then
e

x_ € D(A) and by the definition of an eauilibrium solution, Ax, + flxg) = N,

It follows that

0 = (Axg + Flx)axg) = (Axgsxe) + (£(xg),xo) < =(B-1)|[x | |°

which implies that x, = 0 since by hynothesis R~k > 0. Tence the unique-
ness of the equilibrium solution is proved.

Most of the theorems developed in this section un to now assumed
that the linear part A of (1~1) is the infinitesimal generator of a
contraction semi-groun of class Co, A necessarv and sufficient condition

for A having this pronertv is that A is dissipative, D(A) is dense in H
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and R(I-A) =1 (cf. [7]). Again the requirement R(I-A) = 1 means
the existence of a solution of the functional equation
X = Ax = 2z

for everv z £ H which by 1tself needs further justification. Towever
in case A is a self-ajoint onerator which occurs often in prhvsical
annlications, this requirement can he eliminated in these theorems.
In order to show this, we apnly a theorem from [1] due to Brovder bv
considering a denselv defined closed onerator and then take a self-
adjoint onerator as a special case.

Theorem 3.4, Tet A be a densely defined closed ovnerator from
¥ into H., Sunpose that: (i) A is strictlv dissipative with dissinative
congtant R, ({i) A#* is the closure of its restriction to D(AYA D(A%)
where A* is the adjoint operator of A, (iii) f satisfies the conditions
(1) and (3-2) in theorem 3,2. Then all the results in theorem 3.2 hold.

Proof. Let A1 = A+ £(+), then A.1 is strictly dissipative, since
by hvpothesis
(Alx-Aly,x—y) = (Ax=Av,x~v) + (f(X)-f(v),x~v) < —(B;k)l’x—vflz
for all x,v € D(A) = D(Al). To show that R(I-Ay) = H, let T=I-A;=-A+(I-f(.)),
then D(T)=D(A) 1is denselv defined. Since -A is denselvy defined, A*
exists and is closed, and bv the assumption (ii) -A* is the closure of
its restriction to D(=A)N D(-A*). By (iii) the operator G=I-f(.) is
continuous from all of H to H in the strong tbpology to the weak tonology
which implies its hemi-continuitv from H to H with D(e) = H. The hounded-
ness of G on hounded subsets of H also follows from (iii). Moreover

(Tx-Ty,x-v) = (x-v,x-y) = (A;x-A;y,x-y) 2 (14+8=k) | | x=~v| {2 x,v € D(T)

so that T is monotone. In particular by letting y=0 (0 & N(A)=N(T))

in the above inequalitv and since T.0 = 0-A_.0 = -f(0), it follows

1
that
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(Tx,x) > (16-K) | [x] |7 =(£€0),%) 2 C(Cx#8-k) | [x| =] 1£C) [ ) ]]x]]
for all x € D(T),
and since 8 - k > 0 the real valued function c(|'x|]) defined bv
c(|[x[1) = +e-1) [ [x[[-[[£(0) ]
has the promertv that c(||x||) + = as [|x[| > » . Pence all the
conditions in theorem 1 of [1] are satisfied if we take, for instance,
the comnletelv continuous maonping C=0 (the zero operator which mans all
x € H into the 0 wvector in B), Therefore R(I-Al) = R(T) = H, DBy
annlving theorem 2.1, Alis the infinitesimal generator of a non-linear
negative contraction semi-group on D(Al) = D(A) with the contractive
constant R-k, Thus, the stated results in the thoerem follow directly
from the nepative contraction semi-groun property as in the nroof of
theorem 3,1,

Remark, The above theorem can also he proved with R=k=0, in
which case the equilibrium solution is stable with a stability region
D(A). The proof is exactlv the same by letting R=k=0,

Since an unbounded self-adjoint operator A is a denselv defined
closed onerator having the property that D(A) = D(A*) (in fact A = A%)
we have, with a stronger assumption on the function f, the following result
which is stated as a theorem becasue of its usefulness in applications.

Theorem 3,5. Let A be an unbounded self-adjoint operator from
B to H and assume that it is strictly dissipative with dissipative
constant B, Let f be Lipschitz continuous on H with Linschitz constant
k < g, that is

HEG-£WD ] 2 k] ]x=v]] for all x,y e W,

Then all the results in theorem 3.2 hold.
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Proof. The self-adjointness of A implies that A is a denselv
defined closed onerator ana N(A*) = D(A) (in fact, A=A%*), Thus
condition (ii) in theorem 3.4 1s satisfied. By the Lipschitz con-
tinuity of £, f is continuous in the strong tonologv and 1s hounded
on every bounded subset of HW. This assumption (Lipschitz continuitv)
also imnlies that

(F-F@),x=v) 2 [[FG)-f ] [|x-y]] ¢ kl!X-v'lz for all x,v e H.
T"ence, all the conditions in theorem 3.4 are satisfied, and the results
follow by annlvine that theorem,

Remark., The Lingchitz continuity of f in the theorem can be
weakened by using the conditions (i) and (3-2) in theorem 3,2,

It is easilv seen from theorems 2.1 and 2.2 that stability and
asymptotic stability are invariant if the inner product (+s+) of U is
renlaced by an equivalent inner product (u.-)l with respect to which
Ay = A + £(.) is dissipative. Becanse of its usefulness in applications
(for instance, a non-self-adjoint operator in a Tilbert snace (J1,(*s°))
can sometimes he made self-adjoint in (F,(°")1) where ("-)1 is an
equivalent inner product) we show the followine theorem.

Theorem 3,6, Let A he a denselv defined linear onerator from
F=({,(+5+)) dinto H, and let f satisfy the condition (i) in theorem 3.1.
If there exists an equivalent inner product (-n)1 such that A is a

self-adjoint onerator in Hl = (H,(-,-)l) satisfying

(x5 -6l1x]1] x e D)

and if 9
(E)-£(y),x-v), 2 kllx—y||i with k < B, x,v e 1,

Then, all the results stated in theorem 3.4 are valid.
Proof. Consider A as an opnerator from the space Wy = (H,(O")l)

into Hy. Since A is self-adjoint in the space Fl, it is a denselv defined
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closed operator and D(A) = D(A*), The continuity and the boundedness
of £ with resnect to the !]-ll—norm topology implies the same property

of f with respect to the ||.

Il-norm topologv since these two norms are
equivalent. By assumntion, A is strictly dissipative and the condition
(ii1) 4in theorem 3.4 1is satisfied with respect to (-")1. Hence all
the hypotheses in theorem 3.4 are satisfied hv considering Hl as the

underlving space which implies that the operator A.=A + f(.) 1s the

1
infinitesimal generator of a nonlinear negative contraction semi-groun
{T,; t 2 0} on D(A) with contractive constant B~k in the space Hy. By
theorem 2,2, A is the infinitesimal generator of a nonlinear nepative
semi~-group {Tt; t > 0} on D(A), not necessarily contractive, in the
original space 1., Therefore all the results in theorem 3.4 hold by

the semi-groun pronerties.

4, Applications to Partial Differential Equations

In this section, we shall give some applications of the results
obtained in the previous section to a class of linear and semi-linear
partial differential equations which can serve as an illustration of some
steps in aonlving the theorems develovned for operator differential equa-
tions. For simplicity, we limit our discussion to second order differential
equations in an n-dimensional Euclidian space RD and consider the Filbert
space Lz(ﬁ) as the underlving space. In the following, the first simnle
example of a linear differential equations gives a fairly detailed
description of the application from which some more general equations
can easilv he obtained., Criteria for the existence and stability of
solutions in termg of the coefficients of a given partial differential
operator are stated as theorems which are concrete results of the applica-

tion from the abstract operator differential equation.
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Fxample 4,1. Consider the linear partial differential

equation au a2u Sy
T = a(x) —5 + b(x) == + c(Xu x € (n,1) (4-1)
3t 2 X
X
with the boundary conditions
u(t,®) = u(t,l) =0 (r > 0), (4-2)

Assume that the coefficient a(x) is positive on [N,1] and that a(x),
b(x), c(x) are all infinitelv differentiable functions in an oren

interval T, containing [0,1]. Then the linear operator

% 3
L = a(x) =, + b(x) -5-)(-+ c(x)
IX

is an elliptic partial differential operator (cf. [4]). The formal

adjoint onerator of L is given as

2
L*(+) = 2= @00 () = 1= (hGO () + e ()
9% X

which is also an elliptic partial differential operator. Tt is easilv

shown by a simple calculation that equation (4-1) can be reduced to

the form

ou 1 9 9

3 - alx) 3% (rp(x) 5-)-(-) + c(X)u (4-3)
where -1 ix(b(E)/a(E))dE

q(x) = (a(x)) e O (xo e [0,x] fixed)

(4-4)
p(X) = alx)ax).
Let us seek a solution in the real Hilbert space L2(0,1) in which the

inner product between anv pair of elements u, v € Lz(o,l) is defined by

1

(u, v) = fu(x) v(x) dx . (4=5)
o]

Define the operator T in L2(0,1) as the restriction of L on Cm(O,l)
A o
and T the restriction of L* on C (0,1) by
A o,
D(T) = D(T) = {u e C([0,1]);u(0) = u(l) = 0}

A
Tu = Lu, Tu = L*u u £ D(T).
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A A A
Let A and A denote the closure of T and T respectively (T and T are

closable). Then D(A) is dense in 1L7(0,1) since D(A)> D(T) = C(0,1)
A
which is dense in L%(0,1). Thus A* and (A)* both exist. In general,
T is not self-adjoint with respect to the inner product defined in (4-5).

However, by defining the scalar functional (u,v)l by
1

(u,v)y = (u,qv) = [ u(x) a(x) v(x) dx (4=6)
[o}

where the function q(x) is the known function given in (4-4) it is
eagily seen that ("°)1 possesses all the proverties of an inner product,
1

Since (u,u)y = (u,qu) = f quzdx, it follows that
o

(ogger 1000 Tlul1? £ [TullT £ Cozey 200 lul?

which implies that (-,u)l and () are equivalent. Notice that q(x)>0
and is continuous over the closed interval [0,1] so that it actually
attains its maximum and minimum values bounded away from zero and o,
Moreover, for anv u, v € D(T), on integrating by parts and taking

notice that the boundary conditions are satisfied for any u e D(T)

we have
1l
(u,Tv), = (u,qTv) = f uaf -1 2—{ 220 + cv]dy
’ 1 sd ! q 3% P 3%
1
=of[v =~ (p ax) + ¢ quvldx = (Tu,v); (4=7)

) A
which shows that T=T. It follows that (cf. Dunford and Schwartz [4]
A
p. 1740) A=(A)*=A%* yhich shows that A is self-adjoint in the equivalent

2
Hilbert space Li(O,l) equipped with the inner product (s« Moreover,

)pe
the above equality implies that for any u ¢ D(T)

(uTu)lv-f[p( uy2 —cqu]dx=-f[aa(—-) -c a u’ldx.

On setting uy = ql/z u then (’“1J‘”l[u'11 and by an elementary calculation
2

we have du Ju 2
1,2 1 ' 1 _]_._(b—a'z 2
aq( ) QSFQ 5 (b-a') -t —— 4 (4-8)
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d
where a' E-E; a(x). Hence, integrating by parts and using the well

known inequality

1 1
[ @ axz [ o ax (4-9)
o o
vhich is valid for anv u(x) satisfying the condition (4-2), we have
1 3u 2
= 02 0 L proary 4+ 2 (bma)” 2
(u,Tu); = - £[a(8x )T+ G (b'-a") + e) ujldx
< - ;][',,2 a, += (b'-a") o1 0man? Tu? dy < -8 |ul|?
= 5 min 2 4 a cluy & 2 1
where
a _ min aly)
min ~O<x<l *°X
B = min [1[2 a -+ l (b'( )_a"( )) + _].; (b(X)"a' (X))z - C(X)] (4_10)
0<x<1 min = 2 X X 4 a(x) ’

It follows that if B=0 or 8>0 then T is dissipative or strictlv dissipa-

tive, respectively, with respect to (+ss) The dissipativity or strict

1.
dissipativity of T implies the dissipativity or strict dissipativity,
respectively, of A, To see this, let u € D(A) then hy the definition
of the closure of a closable operator there exists a sequence {un}¢=D(T)

such that u >u and Lim Tun exists and equals Au (cf, [11]). Hence by

n-roo
the continuity of inner product, we have

14 1i 2 2
(Au’u)l = n+: (Tun’un)l s n+2('3|lun'{1> = -Bl'U'|1

which shows the dissipativity and strict dissipativity of A. Therefore,

by applying theorems 3.6 and 3.3 with f = 0 we have the following results.
Theorem 4,1. Assume that the coefficients a(x), b(x) and c(x)

of 4-1 are infinitely differentiable over any open interval I0 con-

taining [0,1] and that a(x) is positive on [0,1]. If the condition (4~10)

is satisfied, then for any initial element uo(x) e D(A) there exists a unique

solution u(t,x) in the sense of definition 1.1 with u(O,x)=u°(x). Moreover,
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the null solution of (4-1) is stable if B=0 and is asymptotically
stable if B > 0 and in the later case the null solution is the
only equilibrium solution.

As an example of the above theorem, take a(x) --%, b(x) = J%sx,

ce(X) = (x2 +J§) where R is a nositive constant to be determined, then

2 2
B = el LR*RHER (0’ -6+ PI-F -

Hence B > 0 if 0 < R < 7 which shows the same result as given in [3].
Remark. The solution u(t,x) in theorem 4.1 is in fact a
solution of (4-1) in the strong sense i.e., EE%%;XL = Au(t,x) in the
norm topology (cf. [7]). However, in the case of semi-linear equations,
it is not certain that this is the case, Thus, we shall assume that any

solution in the following discussion is in the sense of definition 1.1.

Example 4.2. Consider the partial differential equation

2
g%-s a(x) é—% + b(x) §2-+ c(u + £(x,u) (4-11)
) X

with the boundary conditions u(t,0)=u(t,1)=0 where a(x), b(x), c(x)
are the same as in theorem 4.1 and f is a nonlinear function defined
on Lz(O,l) to L2(0,1). According to theorem 3.6, if f is continuous

on L2(0,1) and is bounded on bounded subsets of L2(0,1) such that

(E£0Gu-£06V) u=v), < kll |u=v] li with k, < B, u,ve L2(0,1)
where (.,.)1 is the equivalent inner product defined in (4-6) and B
is given by (4-10), then all the results in theorem 4,1 with respect
to an equilibrium solution, if it exists, remailn wvalid., 1In particular if
£(0)=0, the null solution is exponentially asymptotically stable.

To illustrate the above statement take, for example, the function

2 2
£(x,u) = k(X) —5—5- (> 0).
A tu
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where k(x) is a bounded function on [0,1]. It is obvious that f is continuous
on Lz(n,l) (in the strong topology) and is bounded on Lz(ﬂ,l). By the

definition of (.,.)1 in (4-6)

-1 2 2
(£(x,u)-E(X, V), u-v) | = fk(X) (—F5—5 - ~5—5)a(u-v)dx
0 A +u ATy

1
2 k(x) (utv) . q(u_v)Z dx

= )
O 2u?) (0 2t d)

BA

2 max |k(x) (u)+v()) ]

< A L
=St G022 () 0 P2 0)

1 fu=v (3

It is easily shown that for any real number u, v

[utv] < 1
0Zu?yoZe?d 23
which implies that
k
(f(X’u)"f(X,v):u-V)l < '-{n'l' Hu—vl ll .
where km =nfiflk(x) it follows that if ]E%J;B then the existence and unique-

~ ness of a solution for any initial element uo(x) e D(A) are ensured, More-
over the null solution is exponentially asymptotically stable with stabilitv
region D(A).

Example 4.3. Consider the second order linear differential

eaquations of the form

n
u z ] du
=T = a= (2, (7= ) + c(Xu X €9 (4=~12)
R T TP
with the boundary conditions
u(t,x")=0 x' e 3 Q t>0 (4~13)

where x=(x1,x2,...,xn), 2 is a hounded open subset of the Fuclidean
space R" with boundary 3Q which is a smooth surface and no point in 30
is interior to ¥, the c losure of Q. Assume that aij(X) = aji(x)
(1,3=1,2,...,n) and together with c(x) are infinitely differentiable

real-valued functions in a domain Qo which contains §! and that there



23—

exists a positive constanta such that

n n
2 n
Toooa,, ()EE>a ) & e, £er", (4-14)
153=1 i1 it3=" L ot o’
The operator
s
L = 3o (a4 (x) =) + cx)
1,3=1 X3 3xj

is a strongly elliptic partial differential onerator in Qn'
It is easily seen by definition that the operator L is

formally self-adjoint i.e., L=L*, Let T be the operator in Lz(Q)
defined by

D(T) = {ue C(R); uly') = 0, x' e 3 Q}

Tu = Lu u e D(T),
and let A be the closure of T, By theorem 25 in [4] (p. 1743), A

is self-adjoint., For any u e D(T), integration by parts yields

n
(v,Tu) = f uTudy = f [ Z u %;-(ai x) %ﬁ) + c(x)uz]dx
3

Q R oi,5=1 Xg U
2 3u
= - é [ i§j=1 a; ;00 5§i5;5- c(x)u’ldx

where dx = dxldxz...dxn. By the assumption (4-14) and using the well

known inequality [12]

T 0u,2 2
é 121 (531 ax 2 Y é u® dx (4~15)

where v 1s a positive real number, we obtain

n

(u,Tu) < - Sf2 [ z (2_1_1_ )2 _ c(x)uzldx < _.f (ay - C(X))uzdx
i=1 &

< ~Cay = )l ul]? = -8 lu]|?

max e
= - = - T f g=0
where c, xed c(x) and B =avy Coe Tence, T is dissdipative if B8

and is strictly dissipative if B>0, The dissipativity and strict
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dissipativitv of A follow from the dissipativity and strict dissipativity,
respectively, of T as has been shown in example 4.1 since A is the
closure of T, Therefore, A satisfies all the hypotheses in theorem
3.5, To summarize, we have:

Theorem 4,2. Assume that all the real-valued functions aij(x)=aji(x)
(1,5=1,2,...,n) and c¢(x) in eauation (4-12) are infinitelv differentiable
in a domain Qo containing 9, the closure of Q, where 9 is a bounded onen
set in R" whose boundary 230 is a smooth surface and no noint of 30 is
interior to Q. If the condition (4~14) is satisfied and if

B=ay =122 ct) 20 (4-16)

wvhere o is given in (4~14) and vy is given in (4-15), then for any
ug(x) € D(A) there exists a unique solution u(t,x) to (4-12) strongly
continuous in t with respect to the 1.2(2) norm with u(0,x)=u (x). More-
over, the null solution is stable for 8=0 and is asympntoticallv gtable
if 8 > ® and 1in the later case the null solution is the only eaquilibrium
solution, The stability region is D(A) which can be extended to the
whole space LZ(Q).

It is seen from the above theorem that the major conditions imposed
on the coefficients of the operator L are conditions (4-14) and (4-16).
Notice that if c(x) is a non-positive function, then (4-16) is automaticallv

satisfied, As a special form of (4-12) we consider the equation

n
Ju z u
= (a, () — ) + c(}x) u X € 9 (4-17)
at 1=1 Bxi i Bxi

with the boundarv conditions (4~13). The following result is an immediate
consequence of theorem 4,2.
Corollarv. Assume that the real-valued functions ai(x) (i=1,2,...40)

and c(X) in equation (4-17) are infinitely differentiable in a domain Qo
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containing 2 where 9 1is a bounded open set in R™ whose houndary 30
is sufficiently smooth, If, in addition, ai(x) is positive for each 1
and c¢(x) is non-positive then all the results in theorem 4.2 hold.

Proof. Consider (4-17) as a special form of (4-12) with
aij(x) = ai(x) for i=4 and aij(x)=0 forvi#j. Then the condition (4-14)
is satisfied since by hypothesis a = lzign ( tig ai(x))>0 which implies
n n

) ai(x)\ﬁi;a ) Ei.

n
Yooa () g, =
j=1 1 1 4. f=1

i,
The condition (4~16) follows from the non-nositivitv of c(x). Hence
the results follow by apnlving theorem 4,2,
As an example of the above theorem, consider the equation
au

2
Tl A u-cTu (c real)

where A 1s the Lanlacian operator in QeR3

with 30 sufficiently smooth.
Then all the conditions in the above theorem are fulfilled since in this
case ai(x) = 1 for each 1 and c(¥x) = -c2,

Just as one-dimensional space case, semi-linear equations of

the form n
du Ju
== 1 57, (33300 30 + c0Ou + 06w x € @ (4-18)
i,3=1 i |

with the boundary conditions
ult,x') =0 x' e 3 Q (4-19)
can similarly be treated where f is a function on LZ(Q) to L2(Q).
For the sake of application, we state a theorem which is the
conseauence of theorem 3.5.
Theorem 4,3. Supnose that the semi-linear equation (4-18) with
the boundary conditions (4~19) possesses the same linear part as given

in theorem 4.2. If f satisfies the conditions (i) and (3-2) in theorems

3.1 and 3.2, respectively, where B is given by (4=16). Then (a) For anv
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uo(x) ¢ D(A) there exists a unique solution of (4-18) with u(ﬂ,x)nuo(x).
() An equilibrium solution (or a periodiec solution), if it exists,
is stable if k=B8; and is asymptotically stable if k<B., (c) A stability

region of the equilihrium solution is D(A) which can be extended to the whole

space LZ(Q).
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